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STRESS STATE OF AN ELASTIC SPACE
WITH A TOROIDAL-SHAPED CAVITY

O. M. Heintz' and Yu. I. Solov’ev? UDC 539.3

Solutions are obtained for the stress state problem for an elastic space with an internal toroidal-
shaped cavity that can be expanded in a trigonometric series in the angle in cylindrical coordinates.
Displacements and stresses are specified on the boundary. An analytic solution of the problem is
found using generalized analytic functions. Stresses and displacements of points in the elastic space
are calculated.
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Introduction. Methods for the solution of plane elasticity problems using classical analytic functions of a
complex variable were developed by Muskhelishvili [1]. Methods extending the apparatus of analytic and generalized
analytic functions to dimensional problems are described in [2]. Using these methods to find problem solutions that
admit an expansion in a trigonometric series in the angle in cylindrical coordinates, one can obtain an analytic
solution of some canonical problems. Among such problems is the stress state problem of an elastic body in the
shape of a solid or hollow torus or a space having a toroidal-shaped cavity.

1. Generalized Analytic Functions. Following [3], we shall call a generalized analytic function (GAF)
a continuously differentiable complex-valued function ® of the variables z and r that satisfies the equation

0 .0 2m+1 =
(&ﬂa)@fﬁ(@f@)fo, (1)
where m is an integer and ¢ = z 4 ir. We denote such GAFs by ®,,,(t). The properties of the functions satisfying
Eq. (1) were studied in [4] and other papers.
Separating the real and imaginary terms in (1), we obtain the equalities

9 Red, = L e, + 2" e,
0z or
9 9
E Re ¢’HL = 7& Im ®’m.; (2)

which are similar to the Cauchy—Riemann conditions for classical analytic functions. If the real and imaginary
terms of a GAF are doubly differentiable functions, equalities (2) lead to
vQ

m

0? 2 10 m?
m _ 2 m _ 2 _
(r"Re®,,) =0, V2 ,(r"Im®,)=0 (Vm =5 taatoa 3 )
Following [5], we introduce the derivative of the function ®@,,:

0P o 2m 41
O (t)= -2 = 2 Im®,,. 3
m(?) 0z i + r m (3)
If the function ®,, is doubly differentiable with respect to z and r, @/ satisfies Eq. (1). (It should be noted that the
sum or difference of GAFs and their product into a real constant are GAF's satisfying Eq. (1), but multiplication

by an imaginary constant removes the function from the class of functions considered.)
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The functions ®,,(t) can be treated as pseudoanalytic Bers functions with a generating pair F' = 1, G =
ir=2m=1_ In [5], the zeroes and singular points are classified for Im (FG) > 0 and analogs of the Cauchy theorem
and formula are constructed.

2. Representation of the General Elasticity Solution in Cylindrical Coordinates Using Gen-
eralized Analytic Functions. Let the elastic displacement components in cylindrical coordinates z, r, and 6 be
expanded in trigonometric series:

oo

w(z,r,0) = Z(w}l(z, r)sinnd + w?(z,r) cosnf),
n=0
u(z,r,6) = Z(u}l (z,7)sinnf + u?(z,7) cosnb), (4)
n=0
v(z,r,0) = Z(U}L(z, ) cosnb — v (z,r)sinnf).
n=0

The expansion coefficients should satisfy the following equations (below, the superscripts are omitted):

1 o9
2 n __
Viwa + 75 52 =0,
1 o n
2 _ Wn 1\ _
Vi (tn = 0n) 1= 21/( or 2 19”) 0
1 o n
2 noy =
Vi (tin +0n) + 77 21/( ar 3 ?9”) 0

Here ¥,, = 0wy, /0z + Ouy, /Or + (un — nvy) /7.
In [6-9], the following expressions for the expansion coefficients w,,, u,, and v, are obtained:

2G Wy, + (U — Smvn)] = 7" (6@, — 22P! | — @ o — 2., Im @,3). (5)

Here s,,, = 1 for m > 0; s, = 0 for m = 0; s,, = —1 for m < 0; m = 4+n; & = 3 — 4v; v is Poisson’s ratio; G is
the shear modulus; ®,,;(t) are generalized analytic functions of the complex variable ¢ = z +ir that satisfy Eq. (1)
and the equality

™ Re® =7 "Red’ (1 =1,2,3). (6)

The stress components are also expanded in series of the form (3). For the expansion coefficients o1;?(z,r),

1,2 1,2 7172

oL2(z,7), 052 (2,1), THZ (2,7), TN (2,7), and 752 (2, 7), the following expressions are obtained:

7 m / X/ X/
Ozn + Z(Tzrn - SmTZGn) =r ((I)ml —220,,,—®

m2

s Im ),
Oon + Opn + 0gn = 4(1L + )™ Re @/ |, oon = 2vr" Re @ | + 2G(uy, — nvy,) /1,

Trgn = 17" Re @) o + 2G (nu, — v,,)/r.

3. Generalized Analytic Functions in Toroidal Coordinates. We shall consider problems in toroidal
coordinates (£,7,60) (Fig. 1). Here £ and 7 are bipolar coordinates in the meridional plane § = const which are
related to cylindrical coordinates by the formulas

sinn sinh &
cosh £ — cosn’ ¢ osh & —cosn

(c is a parameter of the coordinate system).
Following [8], we seek generalized analytic functions ®,,; in the form of the series

2
@m,j = ﬁ

m (Olmj@m,m—l + ﬁmj@m,m + ’ijgm,m—i-l) + Z(a;jkq)fnk + afgk fnk)’ (7)

k=1

where i, Bmj, Ymjs @, and aly, are real coefficients, T is the gamma-function, and ®% , and ®¢ , are generalized
analytic functions, which in toroidal coordinates are written as
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ink
oY = rim\/2(cosh & — cos 17){(2k —2m —1)B" 5(cosh &) ((S;I; kZ)
sin (k — 1)n
cos (k — 1)77)
T rm cos kn m cos (k—1)n (8)
- [ij}?(COSh - (—sin Im) B Pk——g}Q(COSh 5)(_ sin (k — l)nﬂ} (k>1),

s _ s ¢ _ FC
m0 — _q)mh (me - cI)ml'

— (2k 4+ 2m — 1) P 5 5 (cosh f)(

Here P | /2 are first-order associated Legendre functions of half-integer index and ©,,, are multivalued general-
ized analytic functions [6, 7]. After counterclockwise tracing around the pole (0,¢), their increments A®,, ;,—1

—2r — 4imz)c™ 2L AO,, g = —2ic™ /2T and AO,, a1 = —2/¢™ L According to [7], for these
) ym—+

functions, the following relations hold:
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I(1/2 — m)
2y/me

1

T Re Oy = \/Q(COSh & —cosn) Pfll/z(cosh §), Re Oy m—1 = - ImO©,,—1,m-1,

['(1/2 —m) 1
2/ crm V/2(cosh € — cosn)

Im©,, m—1 =2m z Im Oy, +
r

x (4msinh {P™ 5 (cosh &) + 4(cosh § — cos n)Pi”;/'; (cosh €)), (9)

—2m—1
Re ®m,m+l =r " Im@fmfl,m+17

T(1/2 = m) 2
W \/2(COSh g — COSn) 1—|—72m Pff;;(cosh g)

According to (3), the derivatives of functions (8) are calculated from the formulas
0 1

a5 Ok = £ [k —2m — R0, — (4h = 2805 + 2k +2m — 2] ],

Im 6mu,m+1 =

I'(1/2 —m) 2m
' = =10+ O, 10
m,m—1 4ﬁ02 ml + c ) ( )
I'1/2—m) _, , I'1/2—m) _.
2 (I)m17 m,m+1 — 2 ml-
4ﬁc 4ﬁc

From the condition that the displacements are continuous and unique, we obtain

/ —
@m,m -

Q2 = &0m1, (39+ 1)Oéml = SmOm3, Ym2 = &Ym1,
(EB + 1)’7m1 = —SmYm3, %ﬂml + B2 = 2smﬂmB (m 7& 0)7 (1]-)

o1 = ap2 = a3 =0, Yo2 = &Yo1, Bo2 = —abo1, Boz = 0.



Fig. 2

4. Solution of Problems for an Elastic Space Having a Toroidal-Shaped Cavity with Displace-
ments Specified on the Cavity Surface. We consider an elastic space with an internal cavity in the shape of
a circumferential torus (Fig. 2). We assume that the axis of the torus coincides with the Oz axis, the geometrical
place of the centers of the sections cut by the planes 8 = const is a circumference of radius p; in the plane z = 0,
and po is the cross-sectional radius of the torus. The equation of the cavity surface in toroidal coordinates has the
form & = & = In[(p1 + ¢)/pa), where ¢ = \/p? — p2.

Let displacements on the surface of the torus be defined by the trigonometric series (4). Then, the expansion
coefficients can be written as

1 N e .
20 = 3 aany 2 A stk + A coskn),
2 o0
2G (U — Up) = — E (Bj, cos kn — By sinkn), (12)

VA —2cosn P
2z
VA —2cosn

Substituting series (12) into (5) and using expressions (7)-(11), we obtain the following relations for Aj“
(the superscripts s and ¢ are omitted):

2G (up, + vy) = Z(C’,ﬁ cos kn — Cf sin kn) (A = 2cosh &).
k=0

Ak = lk - qk/Q. (13)

Here
0 0 0
h=—Loa+Le—Dun k22,  b=(_JJlo+Li-Ls o=, )L~ (;)E

-2 1 1

Ly = [(2k — 2n = 1)(zeap,, — a5y) + @Bn1 — Bu2l Py 5(V/2) (k= 1),

Lo = [—(1+ 2n)(aeay,, — aly) + ®fn — B2l Py 5(A/2),
2 0
QG = Ex—1— B (k> 2), @ = (0>E0—E2, q = ( 1)E1,
By, =[(2k —2n — 1)d}, — 2k +2n + D)dj )P, 5(V/2) (B> 1),
Eo = [8nan — (2n + 1)di]P", 5(A/2).
The relations for the coefficients B} are written as follows (the superscripts s and ¢ are omitted):

By =1 + Qk/2~ (14)
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Here

-2
bo=—Lii+Le—Lisn (k22),  =( " )Lo+Li— Ly,

lo = LO — L1 + 4TLOL711P:11/2()\/2)\/ (A/2)2 - 1,
Ly = [(zay, + a2y, — 2a3,) — (%a;,kJrl + a%,kJrl - 2a§z,k+1)]P]?j11/2()‘/2) (k>1),

Lo = [~ (ean, + a5y — 2ap;) + 2an1 + (—2yn1 + 2703) /(1 + 2")}]31_#/12()‘/2);

0 1
@ =FEx—1 — Epp1 (K >2), g = (2)E0—E2, CIO:_(O)Ela

By = (d}— db )P,V 2) (R21), By = —diPL(02).

In the formulas given above,

&, = (2k —2n—3)al, ,_, — (4k —2al, + 2k +2n+ a), ., (k>2),

; 1—-2n\ - ;
d{:—( )a;1+(3+2n)a;2+2(

Q5 +’7nj)
3+2n '

/an
For the factors written in matrix form, the upper row of the matrix corresponds to the subscript s and the lower
row to the subscript c.

The formulas for the coefficients C}" are obtained from (14) by replacing n by —n for

Lk = [(%a‘l—nk + a2—nk: + 2a3—nk) - (%al—n,k-i-l + a2—n,k+1 + 2a3—n,k+l)]P]¢__n1—;é()‘/2) (kj 2 1)7

Lo = [~(eal, + a2, +20% 1) + 2001 + (=2y-n1 + 27-03) /(1 = 20)]PZ[7E1 (A/2).

Relations (13) and (14) for specified Ay, By, and Ci (k = 0,1,2,...) and conditions (6) form an infinite
system of equations for the coefficients of the series (7). To calculate the stresses and displacements in the elastic
space, it is necessary to determine these coefficients.

5. Solution of Problems for an Elastic Space with a Toroidal-Shaped Cavity under External
Forces Specified on the Cavity Surface. We consider two cases where external forces are specified on the cavity
surface.

1. Let surface stresses be specified in the form

1 1 =
=— = Sicoskn — Spsink
4c \/)\—2(30577;:0( R COS T fsinkn),

2 1 >
Torm — Tap = —— ——————— T sin kn + T¢ cos kn).
" T4 VA 2eosy kzzo( ¢ sin kT cos )
The expressions for 0., + 0rn, Tron, and (0., + orn + 0on)/(1 + v) have the same form as for o,, (S is
replaced by R, V, and Z, respectively), and the expression for 7,.., + 7,9, is obtained by replacing T by U in the
second formula (15).
The procedure for determining the coefficients in the series (15) is described in Sec. 4. In the first formula (15),
we have

20.n

(15)

Sk =l — qr/2,
where 9
ly=—Ly—1+Lp—Lpt1 (k>2), Iy = ( 0 >L0+L1—L2,

Ly = [(2k = 2n = 1)(d} — d}) — (2k + 20+ 1)(dj sy — dii2)I PP 0 (A/2) (k> 1),
Lo = [—(1+2n)(d} — d}) 4 8n(1 — &)an1] P™, /(A/2),
-2
Ry=—Lyp_1+Li—Liyr (k>2), R, = ( 0 )L0+L1—L2, Ro=Lg— Ly,
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By = [(2k = 2n — Dhi — 2k + 20+ Dhe | PP 5(A/2) (k>1),  Eg=—2n+ 1)k P" ;5(A/2),
hi = (2k — 2n — 3)d}._, — (4k — 2)d}, + (2k + 2n+ 1)d} ., (k> 2),

342
m=-({

16n
o 2n)di +@+2mdy+ () )am.

0
The coefficients R, take the form

-2
Ri=—Lii+Li—Len (622, Ri=( )lo+Li—Ly, Ro=Lo—L,

where Ly, = Z} +4((n+ 1)By — (n — 1)Cy) /V A2 — 4.
Next, the coefficients V}, have the form

-2
Vi=—Lp1+Lip— L1 (k>=2), V1:(0>L0+L1*L2, Vo= Lo — L,

where

Ly =7} —4((n+ 1)By + (n — 1)Cy) /A2 — 4,
Z] = [(2k —2n = V)d], — (2k + 20+ D)d]_,|P, ,(\/2) (k> 1),

Zi=(—(2n+1)d + 8noum; ) Py 5 (A/2).

In the calculation of o.,, + 0., + 0g,, the coefficients Zj, are set equal to Z,i.
The coefficients T}, of the series (15) have the form

Tk = lk + Qk/2, (16)
where
Ly = [(d}, + di + di) — (dyyy + dipy + di)IPIH 5 (0/2) (k> 1),
Lo = —(di +di + d}) P"T,(A\/2),

2
Gk = Ex—1 — Exp1r (k> 2), gL = (O)Eo—El, qo = —FEy,

By = (he — i) PP ,,(V/2) (R 21),  Bo=—hiP"f,()/2).
The formulas for Uy, are similar to (16) for
Ly = [(di + di — &) = (dipy + dipr — R )IPIT,(V2) (k21), Lo =—(dy +di —d})P"{5(V/2).
2. On the cavity surface, we specify external forces p,, p,, and pg which are expanded in trigonometric series
of the form (4). The coefficients of these series are related to the stress components by the formulas

Prn = Oupn COS QL+ Typp SIN @, Prn = Tarn COSQ + 0y SIN @, Pon = T20n COS O + Trop SiN v, (17)

where « is the angle between the outward normal to the surface and the axis Oz:
) cosh &ycosn — 1 sinh &y sinn
sinog = ————————— cosq=————"——"—.
cosh &y — cosn cosh &y — cosn

Let the specified external forces be also expanded in trigonometric series in the coordinate 7 of the toroidal
coordinate system:

1 o0
Pen = - (A —2cosn)~3/? Z (P3y sinkn + Pg, coskn),

k=0
1 o0
Prn =4 (A —2cosn)~3/? Z (P2 cos kn — P sinkn), (18)
k=0
1 oo
Pon = - (A —2cosn)~3/? Z (P, sin kn + Pg), cos kn).
k=0
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Substituting (18) into equalities (17) and taking into account the series (15) we obtain
P =/ (M2)?2 =1 (Skt1 — Sk-1) + AMTt1 + U1 + Th—1 + Ug—1)/2 — 2(T, + Ug),
P = (M2)2 =1 (Thyr + U1 — Te—1 — Up—1)
+ /\(Sk+1 — Zg41 + Sk—1 — Zk_l)/Q — Q(Sk — Zk.),

Py, = ()‘/2)2 —1 (Tp—1 — U1 — Theg1 + Upyr) — )\(kal + Vk+1)/2 +2Vi (k>=2),

P = (%)2 -1 [52 - (3)50} + % {TZ +Uz + (0>(TO + UO)} —2(Ty + Uh),

2
Py = (g)2 ~1[B+ ;- (g)(TO - Uo)] + g (52— 22 + (g)(So + Zo)| - 21 - 21), (19)
Pa=1[(3) ~1[(5) @ -0 - T+ 3] = S (v + ()W) +ovs,

P.o=+/(M2)2 =181+ A(T1 + U1)/2 — 2(Tp + Up),
Poo=+/(A\/2)2 =1 (T1 +Up) + A\(S1 — Z1)/2 — 2(So — Zo),

Poo =/ (A\/2)? =1 (=T1 + Uy) — AV1 /2 + 2V},

Substituting the expressions of the quantities in terms of the coefficients of the series (7) into the right side
of (19) and taking into account (6), we obtain an infinite system of equations.

6. Examples of Solutions of Particular Problems for an Elastic Space with a Toroidal-Shaped
Cavity. Below we give results of solution of the following problems: rotation of a rigid torus in an elastic space
around the axis Oy through an angle w = 1 (problem A); stretching of an elastic space by forces 00 = 1 applied at
infinity (problem B); unilateral stretching by a stress o) = 1 at infinity (problem C).

Figure 3 gives the distributions of tangential stresses along the line z = 0, § = 0 for problem A (curve 1
refers to 7., curve 2 to 7,9, and curve 3 to 7.9). Figure 4a and b gives curves of tangential and normal stresses
along the line z = 0, = 0 for problems B and C, respectively (curve 1 refers to o, curve 2 to o, and curve 3 to
og). In all cases, stress concentration is observed at points on the cavity surface at which z = 0. Figure 5 shows
the stress variation from the point N to M (see Fig. 1) on the cavity surface in the section § = 0 at £ = &, for
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Fig. 7
problem B (curves 1 and 2) and problem C (curves 3 and 4). Here curves 1 and 3 correspond to oy and curves 2
and 4 to o).
The extreme values of the stresses are as follows: gy = —0.5995 for o = 3.1145 and o0, = —0.8335 for

a = 3.1145 in problem B and oy = —1.613 for o = —0.143 and o0,, = 1.884 for v = 2.802 in problem C.

Curves of the stresses o, at the points N and M versus the ratio of the radii p;/ps are presented in Fig. 6
(curves 1 and 3 correspond to 77 = 0 and curves 2 and 4 to n = 7) for problem B (curves 1 and 2) and problem C
(curves 3 and 4). In the case p1/p2 &~ 1 (the inner radius of the torus cross section tends to zero) a sharp increase
in the stresses is observed.

The isolines of the maximum tangential stresses for problems B and C are given in Fig. 7a and b, respectively.

Conclusions. The results obtained allow one to refine calculations of the stress—strain state of different
objects, for example, internal defects such as ring cracks or mine openings around pillars at great depth and to
improve the reliability and profitability of such calculations.
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