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STRESS STATE OF AN ELASTIC SPACE

WITH A TOROIDAL-SHAPED CAVITY

UDC 539.3O. M. Heintz1 and Yu. I. Solov’ev2

Solutions are obtained for the stress state problem for an elastic space with an internal toroidal-
shaped cavity that can be expanded in a trigonometric series in the angle in cylindrical coordinates.
Displacements and stresses are specified on the boundary. An analytic solution of the problem is
found using generalized analytic functions. Stresses and displacements of points in the elastic space
are calculated.
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Introduction. Methods for the solution of plane elasticity problems using classical analytic functions of a
complex variable were developed by Muskhelishvili [1]. Methods extending the apparatus of analytic and generalized
analytic functions to dimensional problems are described in [2]. Using these methods to find problem solutions that
admit an expansion in a trigonometric series in the angle in cylindrical coordinates, one can obtain an analytic
solution of some canonical problems. Among such problems is the stress state problem of an elastic body in the
shape of a solid or hollow torus or a space having a toroidal-shaped cavity.

1. Generalized Analytic Functions. Following [3], we shall call a generalized analytic function (GAF)
a continuously differentiable complex-valued function Φ of the variables z and r that satisfies the equation( ∂

∂z
+ i

∂

∂r

)
Φ− 2m + 1

t− t̄
(Φ− Φ̄) = 0, (1)

where m is an integer and t = z + ir. We denote such GAFs by Φm(t). The properties of the functions satisfying
Eq. (1) were studied in [4] and other papers.

Separating the real and imaginary terms in (1), we obtain the equalities
∂

∂z
Re Φm =

∂

∂r
Im Φm +

2m + 1
r

Im Φm,

∂

∂r
Re Φm = − ∂

∂z
Im Φm, (2)

which are similar to the Cauchy–Riemann conditions for classical analytic functions. If the real and imaginary
terms of a GAF are doubly differentiable functions, equalities (2) lead to

∇2
m(rm Re Φm) = 0, ∇2

m+1(r
m Im Φm) = 0

(
∇2

m =
∂2

∂z2
+

∂2

∂r2
+

1
r

∂

∂r
− m2

r2

)
.

Following [5], we introduce the derivative of the function Φm:

Φ′m(t) =
∂Φm

∂z
= −i

∂Φm

∂z
+

2m + 1
r

Im Φm. (3)

If the function Φm is doubly differentiable with respect to z and r, Φ′m satisfies Eq. (1). (It should be noted that the
sum or difference of GAFs and their product into a real constant are GAFs satisfying Eq. (1), but multiplication
by an imaginary constant removes the function from the class of functions considered.)
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The functions Φm(t) can be treated as pseudoanalytic Bers functions with a generating pair F = 1, G =
ir−2m−1. In [5], the zeroes and singular points are classified for Im (F̄G) > 0 and analogs of the Cauchy theorem
and formula are constructed.

2. Representation of the General Elasticity Solution in Cylindrical Coordinates Using Gen-
eralized Analytic Functions. Let the elastic displacement components in cylindrical coordinates z, r, and θ be
expanded in trigonometric series:

w(z, r, θ) =
∞∑

n=0

(w1
n(z, r) sinnθ + w2

n(z, r) cos nθ),

u(z, r, θ) =
∞∑

n=0

(u1
n(z, r) sinnθ + u2

n(z, r) cos nθ), (4)

v(z, r, θ) =
∞∑

n=0

(v1
n(z, r) cos nθ − v2

n(z, r) sinnθ).

The expansion coefficients should satisfy the following equations (below, the superscripts are omitted):

∇2
nwn +

1
1− 2ν

∂ϑn

∂z
= 0,

∇2
n+1(un − vn) +

1
1− 2ν

(∂ϑn

∂r
− n

2
ϑn

)
= 0,

∇2
n−1(un + vn) +

1
1− 2ν

(∂ϑn

∂r
+

n

2
ϑn

)
= 0.

Here ϑn = ∂wn/∂z + ∂un/∂r + (un − nvn)/r.
In [6–9], the following expressions for the expansion coefficients wn, un, and vn are obtained:

2G[wn + i(un − smvn)] = rm(æΦm1 − 2zΦ̄′m1 − Φ̄m2 − 2ism Im Φm3). (5)

Here sm = 1 for m > 0; sm = 0 for m = 0; sm = −1 for m < 0; m = ±n; æ = 3 − 4ν; ν is Poisson’s ratio; G is
the shear modulus; Φmj(t) are generalized analytic functions of the complex variable t = z + ir that satisfy Eq. (1)
and the equality

rm Re Φ′mj = r−m Re Φ′−mj (j = 1, 2, 3). (6)

The stress components are also expanded in series of the form (3). For the expansion coefficients σ1,2
zn (z, r),

σ1,2
rn (z, r), σ1,2

θn (z, r), τ1,2
zrn(z, r), τ1,2

zθn(z, r), and τ1,2
rθn(z, r), the following expressions are obtained:

σzn + i(τzrn − smτzθn) = rm(Φ′m1 − 2zΦ̄′′m1 − Φ̄′m2 − ism Im Φ′m3),

σzn + σrn + σθn = 4(1 + ν)rm Re Φ′m1, σθn = 2νrm Re Φ′m1 + 2G(un − nvn)/r,

τrθn = rm Re Φ′m3 + 2G(nun − vn)/r.

3. Generalized Analytic Functions in Toroidal Coordinates. We shall consider problems in toroidal
coordinates (ξ, η, θ) (Fig. 1). Here ξ and η are bipolar coordinates in the meridional plane θ = const which are
related to cylindrical coordinates by the formulas

z = c
sin η

cosh ξ − cos η
, r = c

sinh ξ

cosh ξ − cos η

(c is a parameter of the coordinate system).
Following [8], we seek generalized analytic functions Φmj in the form of the series

Φmj =
2
√

π

Γ(1/2−m)
(αmjΘm,m−1 + βmjΘm,m + γmjΘm,m+1) +

∞∑
k=1

(ajs
mkΦs

mk + ajc
mkΦc

mk), (7)

where αmj , βmj , γmj , ajs
mk, and ajc

mk are real coefficients, Γ is the gamma-function, and Φs
mk and Φc

mk are generalized
analytic functions, which in toroidal coordinates are written as
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Φs,c
mk =

1
rm

√
2(cosh ξ − cos η)

{
(2k − 2m− 1)Pm

k−1/2(cosh ξ)
( sin kη

cos kη

)
− (2k + 2m− 1)Pm

k−3/2(cosh ξ)
( sin (k − 1)η

cos (k − 1)η

)
− 2i

[
Pm+1

k−1/2(cosh ξ)−
( cos kη

− sin kη

)
− Pm+1

k−3/2(cosh ξ)
( cos (k − 1)η
− sin (k − 1)η

)]}
(k > 1),

(8)

Φs
m0 = −Φs

m1, Φc
m0 = Φc

m1.

Here Pm
k−1/2 are first-order associated Legendre functions of half-integer index and Θmq are multivalued general-

ized analytic functions [6, 7]. After counterclockwise tracing around the pole (0, c), their increments ∆Θm,m−1

= (−2r − 4imz)cm−1/r2m+1, ∆Θm,m = −2icm/r2m+1, and ∆Θm,m+1 = −2/cm+1. According to [7], for these
functions, the following relations hold:

rm Re Θm,m =
Γ(1/2−m)

2
√

π c

√
2(cosh ξ − cos η) Pm

−1/2(cosh ξ), Re Θm,m−1 =
1
r

Im Θm−1,m−1,

Im Θm,m−1 = 2m
z

r
Im Θm,m +

Γ(1/2−m)
2
√

π crm

1√
2(cosh ξ − cos η)

× (4m sinh ξPm
−1/2(cosh ξ) + 4(cosh ξ − cos η)Pm+1

−1/2(cosh ξ)), (9)

Re Θm,m+1 = r−2m−1 Im Θ−m−1,m+1,

Im Θm,m+1 =
Γ(1/2−m)
2
√

π crm

√
2(cosh ξ − cos η)

2
1 + 2m

Pm+1
−1/2(cosh ξ).

According to (3), the derivatives of functions (8) are calculated from the formulas

∂

∂z
Φs,c

mk = ± 1
4c

[(2k − 2m− 1)Φc,s
m,k+1 − (4k − 2)Φc,s

mk + (2k + 2m− 1)Φc,s
m,k−1],

Θ′
m,m−1 =

Γ(1/2−m)
4
√

πc2
Φc

m1 +
2m

c
Θm,m, (10)

Θ′
m,m = −Γ(1/2−m)

4
√

πc2
Φs

m1, Θ′
m,m+1 =

Γ(1/2−m)
4
√

πc2
Φc

m1.

From the condition that the displacements are continuous and unique, we obtain

αm2 = æαm1, (æ + 1)αm1 = smαm3, γm2 = æγm1,

(æ + 1)γm1 = −smγm3, æβm1 + βm2 = 2smβm3 (m 6= 0), (11)

α01 = α02 = α03 = 0, γ02 = æγ01, β02 = −æβ01, β03 = 0.
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4. Solution of Problems for an Elastic Space Having a Toroidal-Shaped Cavity with Displace-
ments Specified on the Cavity Surface. We consider an elastic space with an internal cavity in the shape of
a circumferential torus (Fig. 2). We assume that the axis of the torus coincides with the Oz axis, the geometrical
place of the centers of the sections cut by the planes θ = const is a circumference of radius ρ1 in the plane z = 0,
and ρ2 is the cross-sectional radius of the torus. The equation of the cavity surface in toroidal coordinates has the
form ξ = ξ0 = ln [(ρ1 + c)/ρ2], where c =

√
ρ2
1 − ρ2

2.
Let displacements on the surface of the torus be defined by the trigonometric series (4). Then, the expansion

coefficients can be written as

2Gwn =
1√

λ− 2 cos η

∞∑
k=0

(As
k sin kη + Ac

k cos kη),

2G(un − vn) = − 2√
λ− 2 cos η

∞∑
k=0

(Bs
k cos kη −Bc

k sin kη), (12)

2G(un + vn) = − 2√
λ− 2 cos η

∞∑
k=0

(Cs
k cos kη − Cc

k sin kη) (λ = 2 cosh ξ0).

Substituting series (12) into (5) and using expressions (7)–(11), we obtain the following relations for As,c
k

(the superscripts s and c are omitted):

Ak = lk − qk/2. (13)

Here

lk = −Lk−1 + Lk − Lk+1 (k > 2), l1 =
( 0
−2

)
L0 + L1 − L2, l0 =

(0
1

)
L0 −

(0
1

)
L1,

Lk = [(2k − 2n− 1)(æa1
nk − a2

nk) + æβn1 − βn2]Pn
k−1/2(λ/2) (k > 1),

L0 = [−(1 + 2n)(æa1
n1 − a2

n1) + æβn1 − βn2]Pn
−1/2(λ/2),

qk = Ek−1 − Ek+1 (k > 2), q1 =
(2

0

)
E0 − E2, q0 =

( 0
−1

)
E1,

Ek = [(2k − 2n− 1)d1
k − (2k + 2n + 1)d1

k+1]P
n
k−1/2(λ/2) (k > 1),

E0 = [8nαn1 − (2n + 1)d1
1]P

n
−1/2(λ/2).

The relations for the coefficients Bs,c
k are written as follows (the superscripts s and c are omitted):

Bk = lk + qk/2. (14)
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Here

lk = −Lk−1 + Lk − Lk+1 (k > 2), l1 =
(−2

0

)
L0 + L1 − L2,

l0 = L0 − L1 + 4nαn1P
n
−1/2(λ/2)

√
(λ/2)2 − 1,

Lk = [(æa1
nk + a2

nk − 2a3
nk)− (æa1

n,k+1 + a2
n,k+1 − 2a3

n,k+1)]P
n+1
k−1/2(λ/2) (k > 1),

L0 = [−(æa1
n1 + a2

n1 − 2a3
n1) + 2αn1 + (−2æγn1 + 2γn3)/(1 + 2n)]Pn+1

−1/2(λ/2),

qk = Ek−1 − Ek+1 (k > 2), q1 =
(0

2

)
E0 − E2, q0 = −

(1
0

)
E1,

Ek = (d1
k − d1

k+1)P
n+1
k−1/2(λ/2) (k > 1), E0 = −d1

1P
n+1
−1/2(λ/2).

In the formulas given above,

dj
k = (2k − 2n− 3)aj

n,k−1 − (4k − 2)aj
nk + (2k + 2n + 1)aj

n,k+1 (k > 2),

dj
1 = −

(1− 2n

3 + 2n

)
aj

n1 + (3 + 2n)aj
n2 + 2

(αnj + γnj

βnj

)
.

For the factors written in matrix form, the upper row of the matrix corresponds to the subscript s and the lower
row to the subscript c.

The formulas for the coefficients Cs,c
nk are obtained from (14) by replacing n by −n for

Lk = [(æa1
−nk + a2

−nk + 2a3
−nk)− (æa1

−n,k+1 + a2
−n,k+1 + 2a3

−n,k+1)]P
−n+1
k−1/2(λ/2) (k > 1),

L0 = [−(æa1
−n1 + a2

−n1 + 2a3
−n1) + 2α−n1 + (−2æγ−n1 + 2γ−n3)/(1− 2n)]P−n+1

−1/2 (λ/2).

Relations (13) and (14) for specified Ak, Bk, and Ck (k = 0, 1, 2, . . .) and conditions (6) form an infinite
system of equations for the coefficients of the series (7). To calculate the stresses and displacements in the elastic
space, it is necessary to determine these coefficients.

5. Solution of Problems for an Elastic Space with a Toroidal-Shaped Cavity under External
Forces Specified on the Cavity Surface. We consider two cases where external forces are specified on the cavity
surface.

1. Let surface stresses be specified in the form

2σzn =
1
4c

1√
λ− 2 cos η

∞∑
k=0

(Ss
k cos kη − Sc

k sin kη),

τzrn − τzθn = − 2
4c

1√
λ− 2 cos η

∞∑
k=0

(T s
k sin kη + T c

k cos kη).
(15)

The expressions for σzn + σrn, τrθn, and (σzn + σrn + σθn)/(1 + ν) have the same form as for σzn (S is
replaced by R, V , and Z, respectively), and the expression for τzrn + τzθn is obtained by replacing T by U in the
second formula (15).

The procedure for determining the coefficients in the series (15) is described in Sec. 4. In the first formula (15),
we have

Sk = lk − qk/2,

where
lk = −Lk−1 + Lk − Lk+1 (k > 2), l1 =

(−2
0

)
L0 + L1 − L2,

Lk = [(2k − 2n− 1)(d1
k − d2

k)− (2k + 2n + 1)(d1
k+1 − d2

k+2)]P
n
k−1/2(λ/2) (k > 1),

L0 = [−(1 + 2n)(d1
1 − d2

1) + 8n(1− æ)αn1]Pn
−1/2(λ/2),

Rk = −Lk−1 + Lk − Lk+1 (k > 2), R1 =
(−2

0

)
L0 + L1 − L2, R0 = L0 − L1,
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Ek = [(2k − 2n− 1)hk − (2k + 2n + 1)hk+1]Pn
k−1/2(λ/2) (k > 1), E0 = −(2n + 1)h1P

n
−1/2(λ/2),

hk = (2k − 2n− 3)d1
k−1 − (4k − 2)d1

k + (2k + 2n + 1)d1
k+1 (k > 2),

h1 = −
(3 + 2n

1− 2n

)
d1
1 + (3 + 2n)d1

2 +
(16n

0

)
αn1.

The coefficients Rk take the form

Rk = −Lk−1 + Lk − Lk+1 (k > 2), R1 =
(−2

0

)
L0 + L1 − L2, R0 = L0 − L1,

where Lk = Z1
k + 4((n + 1)Bk − (n− 1)Ck)/

√
λ2 − 4.

Next, the coefficients Vk have the form

Vk = −Lk−1 + Lk − Lk+1 (k > 2), V1 =
(−2

0

)
L0 + L1 − L2, V0 = L0 − L1,

where

Lk = Z3
k − 4((n + 1)Bk + (n− 1)Ck)/

√
λ2 − 4,

Zj
k = [(2k − 2n− 1)dj

k − (2k + 2n + 1)dj
k+1]P

n
k−1/2(λ/2) (k > 1),

Zj
0 = (−(2n + 1)dj

1 + 8nαnj)Pn
−1/2(λ/2).

In the calculation of σzn + σrn + σθn, the coefficients Zk are set equal to Z1
k .

The coefficients Tk of the series (15) have the form

Tk = lk + qk/2, (16)

where

Lk = [(d1
k + d2

k + d3
k)− (d1

k+1 + d2
k+1 + d3

k+1)]P
n+1
k−1/2(λ/2) (k > 1),

L0 = −(d1
1 + d2

1 + d3
1)P

n+1
−1/2(λ/2),

qk = Ek−1 − Ek+1 (k > 2), q1 =
(2

0

)
E0 − E1, q0 = −E1,

Ek = (hk − hk+1)Pn+1
k−1/2(λ/2) (k > 1), E0 = −h1P

n+1
−1/2(λ/2).

The formulas for Uk are similar to (16) for

Lk = [(d1
k + d2

k − d3
k)− (d1

k+1 + d2
k+1 − d3

k+1)]P
n+1
k−1/2(λ/2) (k > 1), L0 = −(d1

1 + d2
1 − d3

1)P
n+1
−1/2(λ/2).

2. On the cavity surface, we specify external forces pz, pr, and pθ which are expanded in trigonometric series
of the form (4). The coefficients of these series are related to the stress components by the formulas

pzn = σzn cos α + τzrn sinα, prn = τzrn cos α + σrn sinα, pθn = τzθn cos α + τrθn sinα, (17)

where α is the angle between the outward normal to the surface and the axis Oz:

sinα = −cosh ξ0 cos η − 1
cosh ξ0 − cos η

, cos α = − sinh ξ0 sin η

cosh ξ0 − cos η
.

Let the specified external forces be also expanded in trigonometric series in the coordinate η of the toroidal
coordinate system:

pzn =
1
4c

(λ− 2 cos η)−3/2
∞∑

k=0

(P s
zk sin kη + P c

zk cos kη),

prn =
1
4c

(λ− 2 cos η)−3/2
∞∑

k=0

(P s
rk cos kη − P c

rk sin kη), (18)

pθn =
1
4c

(λ− 2 cos η)−3/2
∞∑

k=0

(P s
θk sin kη + P c

θk cos kη).
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Substituting (18) into equalities (17) and taking into account the series (15) we obtain

Pzk =
√

(λ/2)2 − 1 (Sk+1 − Sk−1) + λ(Tk+1 + Uk+1 + Tk−1 + Uk−1)/2− 2(Tk + Uk),

Prk =
√

(λ/2)2 − 1 (Tk+1 + Uk+1 − Tk−1 − Uk−1)

+ λ(Sk+1 − Zk+1 + Sk−1 − Zk−1)/2− 2(Sk − Zk),

Pθk =
√

(λ/2)2 − 1 (Tk−1 − Uk−1 − Tk+1 + Uk+1)− λ(Vk−1 + Vk+1)/2 + 2Vk (k > 2),

Pz1 =

√(λ

2

)2

− 1
[
S2 −

(2
0

)
S0

]
+

λ

2

[
T2 + U2 +

(0
2

)
(T0 + U0)

]
− 2(T1 + U1),

Pr1 =

√(λ

2

)2

− 1
[
T2 + U2 −

(0
2

)
(T0 − U0)

]
+

λ

2

[
S2 − Z2 +

(2
0

)
(S0 + Z0)

]
− 2(S1 − Z1), (19)

Pθ1 =

√(λ

2

)2

− 1
[(0

2

)
(T0 − U0)− T2 + U2

]
− λ

2

(
V2 +

(2
0

)
V0

)
+ 2V1,

Pz0 =
√

(λ/2)2 − 1 S1 + λ(T1 + U1)/2− 2(T0 + U0),

Pr0 =
√

(λ/2)2 − 1 (T1 + U1) + λ(S1 − Z1)/2− 2(S0 − Z0),

Pθ0 =
√

(λ/2)2 − 1 (−T1 + U1)− λV1/2 + 2V0.

Substituting the expressions of the quantities in terms of the coefficients of the series (7) into the right side
of (19) and taking into account (6), we obtain an infinite system of equations.

6. Examples of Solutions of Particular Problems for an Elastic Space with a Toroidal-Shaped
Cavity. Below we give results of solution of the following problems: rotation of a rigid torus in an elastic space
around the axis Oy through an angle ω = 1 (problem A); stretching of an elastic space by forces σ0

z = 1 applied at
infinity (problem B); unilateral stretching by a stress σ0

x = 1 at infinity (problem C).
Figure 3 gives the distributions of tangential stresses along the line z = 0, θ = 0 for problem A (curve 1

refers to τzr, curve 2 to τzθ, and curve 3 to τrθ). Figure 4a and b gives curves of tangential and normal stresses
along the line z = 0, θ = 0 for problems B and C, respectively (curve 1 refers to σz, curve 2 to σr, and curve 3 to
σθ). In all cases, stress concentration is observed at points on the cavity surface at which z = 0. Figure 5 shows
the stress variation from the point N to M (see Fig. 1) on the cavity surface in the section θ = 0 at ξ = ξ0 for
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problem B (curves 1 and 2) and problem C (curves 3 and 4). Here curves 1 and 3 correspond to σθ and curves 2
and 4 to ση.

The extreme values of the stresses are as follows: σθ = −0.5995 for α = 3.1145 and ση = −0.8335 for
α = 3.1145 in problem B and σθ = −1.613 for α = −0.143 and ση = 1.884 for α = 2.802 in problem C.

Curves of the stresses σz at the points N and M versus the ratio of the radii ρ1/ρ2 are presented in Fig. 6
(curves 1 and 3 correspond to η = 0 and curves 2 and 4 to η = π) for problem B (curves 1 and 2) and problem C
(curves 3 and 4). In the case ρ1/ρ2 ≈ 1 (the inner radius of the torus cross section tends to zero) a sharp increase
in the stresses is observed.

The isolines of the maximum tangential stresses for problems B and C are given in Fig. 7a and b, respectively.
Conclusions. The results obtained allow one to refine calculations of the stress–strain state of different

objects, for example, internal defects such as ring cracks or mine openings around pillars at great depth and to
improve the reliability and profitability of such calculations.
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